components/esp32-rotary-encoder/rotary_encoder.c

changeset 0
88d965579617
child 73
c18d2951e8d7
equal deleted inserted replaced
-1:000000000000 0:88d965579617
1 /*
2 * Copyright (c) 2019 David Antliff
3 * Copyright 2011 Ben Buxton
4 *
5 * This file is part of the esp32-rotary-encoder component.
6 *
7 * esp32-rotary-encoder is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * esp32-rotary-encoder is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with esp32-rotary-encoder. If not, see <https://www.gnu.org/licenses/>.
19 */
20
21 /**
22 * @file rotary_encoder.c
23 * @brief Driver implementation for the ESP32-compatible Incremental Rotary Encoder component.
24 *
25 * Based on https://github.com/buxtronix/arduino/tree/master/libraries/Rotary
26 * Original header follows:
27 *
28 * Rotary encoder handler for arduino. v1.1
29 *
30 * Copyright 2011 Ben Buxton. Licenced under the GNU GPL Version 3.
31 * Contact: bb@cactii.net
32 *
33 * A typical mechanical rotary encoder emits a two bit gray code
34 * on 3 output pins. Every step in the output (often accompanied
35 * by a physical 'click') generates a specific sequence of output
36 * codes on the pins.
37 *
38 * There are 3 pins used for the rotary encoding - one common and
39 * two 'bit' pins.
40 *
41 * The following is the typical sequence of code on the output when
42 * moving from one step to the next:
43 *
44 * Position Bit1 Bit2
45 * ----------------------
46 * Step1 0 0
47 * 1/4 1 0
48 * 1/2 1 1
49 * 3/4 0 1
50 * Step2 0 0
51 *
52 * From this table, we can see that when moving from one 'click' to
53 * the next, there are 4 changes in the output code.
54 *
55 * - From an initial 0 - 0, Bit1 goes high, Bit0 stays low.
56 * - Then both bits are high, halfway through the step.
57 * - Then Bit1 goes low, but Bit2 stays high.
58 * - Finally at the end of the step, both bits return to 0.
59 *
60 * Detecting the direction is easy - the table simply goes in the other
61 * direction (read up instead of down).
62 *
63 * To decode this, we use a simple state machine. Every time the output
64 * code changes, it follows state, until finally a full steps worth of
65 * code is received (in the correct order). At the final 0-0, it returns
66 * a value indicating a step in one direction or the other.
67 *
68 * It's also possible to use 'half-step' mode. This just emits an event
69 * at both the 0-0 and 1-1 positions. This might be useful for some
70 * encoders where you want to detect all positions.
71 *
72 * If an invalid state happens (for example we go from '0-1' straight
73 * to '1-0'), the state machine resets to the start until 0-0 and the
74 * next valid codes occur.
75 *
76 * The biggest advantage of using a state machine over other algorithms
77 * is that this has inherent debounce built in. Other algorithms emit spurious
78 * output with switch bounce, but this one will simply flip between
79 * sub-states until the bounce settles, then continue along the state
80 * machine.
81 * A side effect of debounce is that fast rotations can cause steps to
82 * be skipped. By not requiring debounce, fast rotations can be accurately
83 * measured.
84 * Another advantage is the ability to properly handle bad state, such
85 * as due to EMI, etc.
86 * It is also a lot simpler than others - a static state table and less
87 * than 10 lines of logic.
88 */
89
90 #include "rotary_encoder.h"
91
92 #include "esp_log.h"
93 #include "driver/gpio.h"
94
95 #define TAG "rotary_encoder"
96
97 //#define ROTARY_ENCODER_DEBUG
98
99 // Use a single-item queue so that the last value can be easily overwritten by the interrupt handler
100 #define EVENT_QUEUE_LENGTH 1
101
102 #define TABLE_ROWS 7
103
104 #define DIR_NONE 0x0 // No complete step yet.
105 #define DIR_CW 0x10 // Clockwise step.
106 #define DIR_CCW 0x20 // Anti-clockwise step.
107
108 // Create the half-step state table (emits a code at 00 and 11)
109 #define R_START 0x0
110 #define H_CCW_BEGIN 0x1
111 #define H_CW_BEGIN 0x2
112 #define H_START_M 0x3
113 #define H_CW_BEGIN_M 0x4
114 #define H_CCW_BEGIN_M 0x5
115
116 static const uint8_t _ttable_half[TABLE_ROWS][TABLE_COLS] = {
117 // 00 01 10 11 // BA
118 {H_START_M, H_CW_BEGIN, H_CCW_BEGIN, R_START}, // R_START (00)
119 {H_START_M | DIR_CCW, R_START, H_CCW_BEGIN, R_START}, // H_CCW_BEGIN
120 {H_START_M | DIR_CW, H_CW_BEGIN, R_START, R_START}, // H_CW_BEGIN
121 {H_START_M, H_CCW_BEGIN_M, H_CW_BEGIN_M, R_START}, // H_START_M (11)
122 {H_START_M, H_START_M, H_CW_BEGIN_M, R_START | DIR_CW}, // H_CW_BEGIN_M
123 {H_START_M, H_CCW_BEGIN_M, H_START_M, R_START | DIR_CCW}, // H_CCW_BEGIN_M
124 };
125
126 // Create the full-step state table (emits a code at 00 only)
127 # define F_CW_FINAL 0x1
128 # define F_CW_BEGIN 0x2
129 # define F_CW_NEXT 0x3
130 # define F_CCW_BEGIN 0x4
131 # define F_CCW_FINAL 0x5
132 # define F_CCW_NEXT 0x6
133
134 static const uint8_t _ttable_full[TABLE_ROWS][TABLE_COLS] = {
135 // 00 01 10 11 // BA
136 {R_START, F_CW_BEGIN, F_CCW_BEGIN, R_START}, // R_START
137 {F_CW_NEXT, R_START, F_CW_FINAL, R_START | DIR_CW}, // F_CW_FINAL
138 {F_CW_NEXT, F_CW_BEGIN, R_START, R_START}, // F_CW_BEGIN
139 {F_CW_NEXT, F_CW_BEGIN, F_CW_FINAL, R_START}, // F_CW_NEXT
140 {F_CCW_NEXT, R_START, F_CCW_BEGIN, R_START}, // F_CCW_BEGIN
141 {F_CCW_NEXT, F_CCW_FINAL, R_START, R_START | DIR_CCW}, // F_CCW_FINAL
142 {F_CCW_NEXT, F_CCW_FINAL, F_CCW_BEGIN, R_START}, // F_CCW_NEXT
143 };
144
145 static uint8_t _process(rotary_encoder_info_t * info)
146 {
147 uint8_t event = 0;
148 if (info != NULL)
149 {
150 // Get state of input pins.
151 uint8_t pin_state = (gpio_get_level(info->pin_b) << 1) | gpio_get_level(info->pin_a);
152
153 // Determine new state from the pins and state table.
154 #ifdef ROTARY_ENCODER_DEBUG
155 uint8_t old_state = info->table_state;
156 #endif
157 info->table_state = info->table[info->table_state & 0xf][pin_state];
158
159 // Return emit bits, i.e. the generated event.
160 event = info->table_state & 0x30;
161 #ifdef ROTARY_ENCODER_DEBUG
162 ESP_EARLY_LOGD(TAG, "BA %d%d, state 0x%02x, new state 0x%02x, event 0x%02x",
163 pin_state >> 1, pin_state & 1, old_state, info->table_state, event);
164 #endif
165 }
166 return event;
167 }
168
169 static void _isr_rotenc(void * args)
170 {
171 rotary_encoder_info_t * info = (rotary_encoder_info_t *)args;
172 uint8_t event = _process(info);
173 bool send_event = false;
174
175 switch (event)
176 {
177 case DIR_CW:
178 ++info->state.position;
179 info->state.direction = ROTARY_ENCODER_DIRECTION_CLOCKWISE;
180 send_event = true;
181 break;
182 case DIR_CCW:
183 --info->state.position;
184 info->state.direction = ROTARY_ENCODER_DIRECTION_COUNTER_CLOCKWISE;
185 send_event = true;
186 break;
187 default:
188 break;
189 }
190
191 if (send_event && info->queue)
192 {
193 rotary_encoder_event_t queue_event =
194 {
195 .state =
196 {
197 .position = info->state.position,
198 .direction = info->state.direction,
199 },
200 };
201 BaseType_t task_woken = pdFALSE;
202 xQueueOverwriteFromISR(info->queue, &queue_event, &task_woken);
203 if (task_woken)
204 {
205 portYIELD_FROM_ISR();
206 }
207 }
208 }
209
210 esp_err_t rotary_encoder_init(rotary_encoder_info_t * info, gpio_num_t pin_a, gpio_num_t pin_b)
211 {
212 esp_err_t err = ESP_OK;
213 if (info)
214 {
215 info->pin_a = pin_a;
216 info->pin_b = pin_b;
217 info->table = &_ttable_full[0]; //enable_half_step ? &_ttable_half[0] : &_ttable_full[0];
218 info->table_state = R_START;
219 info->state.position = 0;
220 info->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
221
222 // configure GPIOs
223 gpio_pad_select_gpio(info->pin_a);
224 gpio_set_pull_mode(info->pin_a, GPIO_PULLUP_ONLY);
225 gpio_set_direction(info->pin_a, GPIO_MODE_INPUT);
226 gpio_set_intr_type(info->pin_a, GPIO_INTR_ANYEDGE);
227
228 gpio_pad_select_gpio(info->pin_b);
229 gpio_set_pull_mode(info->pin_b, GPIO_PULLUP_ONLY);
230 gpio_set_direction(info->pin_b, GPIO_MODE_INPUT);
231 gpio_set_intr_type(info->pin_b, GPIO_INTR_ANYEDGE);
232
233 // install interrupt handlers
234 gpio_isr_handler_add(info->pin_a, _isr_rotenc, info);
235 gpio_isr_handler_add(info->pin_b, _isr_rotenc, info);
236 }
237 else
238 {
239 ESP_LOGE(TAG, "info is NULL");
240 err = ESP_ERR_INVALID_ARG;
241 }
242 return err;
243 }
244
245 esp_err_t rotary_encoder_enable_half_steps(rotary_encoder_info_t * info, bool enable)
246 {
247 esp_err_t err = ESP_OK;
248 if (info)
249 {
250 info->table = enable ? &_ttable_half[0] : &_ttable_full[0];
251 info->table_state = R_START;
252 }
253 else
254 {
255 ESP_LOGE(TAG, "info is NULL");
256 err = ESP_ERR_INVALID_ARG;
257 }
258 return err;
259 }
260
261 esp_err_t rotary_encoder_flip_direction(rotary_encoder_info_t * info)
262 {
263 esp_err_t err = ESP_OK;
264 if (info)
265 {
266 gpio_num_t temp = info->pin_a;
267 info->pin_a = info->pin_b;
268 info->pin_b = temp;
269 }
270 else
271 {
272 ESP_LOGE(TAG, "info is NULL");
273 err = ESP_ERR_INVALID_ARG;
274 }
275 return err;
276 }
277
278 esp_err_t rotary_encoder_uninit(rotary_encoder_info_t * info)
279 {
280 esp_err_t err = ESP_OK;
281 if (info)
282 {
283 gpio_isr_handler_remove(info->pin_a);
284 gpio_isr_handler_remove(info->pin_b);
285 }
286 else
287 {
288 ESP_LOGE(TAG, "info is NULL");
289 err = ESP_ERR_INVALID_ARG;
290 }
291 return err;
292 }
293
294 QueueHandle_t rotary_encoder_create_queue(void)
295 {
296 return xQueueCreate(EVENT_QUEUE_LENGTH, sizeof(rotary_encoder_event_t));
297 }
298
299 esp_err_t rotary_encoder_set_queue(rotary_encoder_info_t * info, QueueHandle_t queue)
300 {
301 esp_err_t err = ESP_OK;
302 if (info)
303 {
304 info->queue = queue;
305 }
306 else
307 {
308 ESP_LOGE(TAG, "info is NULL");
309 err = ESP_ERR_INVALID_ARG;
310 }
311 return err;
312 }
313
314 esp_err_t rotary_encoder_get_state(const rotary_encoder_info_t * info, rotary_encoder_state_t * state)
315 {
316 esp_err_t err = ESP_OK;
317 if (info && state)
318 {
319 // make a snapshot of the state
320 state->position = info->state.position;
321 state->direction = info->state.direction;
322 }
323 else
324 {
325 ESP_LOGE(TAG, "info and/or state is NULL");
326 err = ESP_ERR_INVALID_ARG;
327 }
328 return err;
329 }
330
331 esp_err_t rotary_encoder_reset(rotary_encoder_info_t * info)
332 {
333 esp_err_t err = ESP_OK;
334 if (info)
335 {
336 info->state.position = 0;
337 info->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
338 }
339 else
340 {
341 ESP_LOGE(TAG, "info is NULL");
342 err = ESP_ERR_INVALID_ARG;
343 }
344 return err;
345 }

mercurial