main/task_adc.c

Sat, 12 Oct 2019 21:05:09 +0200

author
Michiel Broek <mbroek@mbse.eu>
date
Sat, 12 Oct 2019 21:05:09 +0200
changeset 10
d08c7466bb40
parent 0
88d965579617
child 12
7dc9003f86a8
permissions
-rw-r--r--

One-wire bus can now handle multiple sensors.

/**
 * @file task_adc.c
 * @brief The FreeRTOS task to query the pressure sensors on ADC inputs.
 *        The task will update the ADC_State structure.
 */


#include "config.h"


#define DEFAULT_VREF    	1093        			///< Use adc2_vref_to_gpio() to obtain a better estimate
#define NO_OF_SAMPLES   	64          			///< Multisampling


#define PRESSURE_1		(CONFIG_PRESSURE_1)
#define PRESSURE_2      	(CONFIG_PRESSURE_2)
#define PRESSURE_3      	(CONFIG_PRESSURE_3)
#define BATT_CHANNEL		(CONFIG_BATT_CHANNEL)
#define	BATT_ACTOR		(CONFIG_BATT_ACTOR)


static const char		*TAG = "task_adc";

SemaphoreHandle_t		xSemaphoreADC = NULL;		///< Semaphire ADC task
EventGroupHandle_t		xEventGroupADC;			///< Events ADC task
ADC_State			*adc_state;			///< Public state for other tasks

const int TASK_ADC_REQUEST_PRESSURE = BIT0;			///< Request temperature measurements
const int TASK_ADC_REQUEST_DONE = BIT1;				///< Request is completed



void request_adc(void)
{
    xEventGroupClearBits(xEventGroupADC, TASK_ADC_REQUEST_DONE);
    xEventGroupSetBits(xEventGroupADC, TASK_ADC_REQUEST_PRESSURE);
}



bool ready_adc(void)
{
    if (xEventGroupGetBits(xEventGroupADC) & TASK_ADC_REQUEST_DONE)
	return true;
    return false;
}


/*
static void print_char_val_type(esp_adc_cal_value_t val_type)
{
    if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) {
        ESP_LOGI(TAG, "Characterized using Two Point Value");
    } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) {
        ESP_LOGI(TAG, "Characterized using eFuse Vref");
    } else {
        ESP_LOGI(TAG, "Characterized using Default Vref");
    }
}
*/


/*
 * Task to read pressure sensors and battery voltage on request.
 */
void task_adc(void *pvParameter)
{
    int		i, adc_reading;
    adc_atten_t	atten = ADC_ATTEN_DB_0;

    ESP_LOGI(TAG, "Starting task ADC sensors");
//    esp_log_level_set("task_adc", ESP_LOG_DEBUG);

    //Check TP is burned into eFuse
//    ESP_LOGI(TAG, "eFuse Two Point: %supported", (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_TP) == ESP_OK) ? "S":"NOT s");
    //Check Vref is burned into eFuse
//    ESP_LOGI(TAG, "eFuse Vref: %supported", (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_VREF) == ESP_OK) ? "S":"NOT s");

    adc_state = malloc(sizeof(ADC_State));
    for (i = 0; i < 3; i++) {
	adc_state->Pressure[i].valid = false;
//	adc_state->Pressure[i].atten = ADC_ATTEN_DB_2_5; // Optimal 100..1250 mV, max 1500 mV. max 4,5 bar.
	adc_state->Pressure[i].atten = ADC_ATTEN_DB_6;   // Optimal 150..1750 mV, max 2200 mV, max 6,3 bar.
	adc_state->Pressure[i].voltage = 0;
	adc_state->Pressure[i].error = ADC_ERR_NONE;
    }
    adc_state->Pressure[0].channel = PRESSURE_1;
    adc_state->Pressure[1].channel = PRESSURE_2;
    adc_state->Pressure[2].channel = PRESSURE_3;
    adc_state->Batt_voltage = 0;
    adc_state->Batt_error = ADC_ERR_NONE;

    //Characterize ADC
    esp_adc_cal_characteristics_t *adc_chars = calloc(1, sizeof(esp_adc_cal_characteristics_t));    
//    esp_adc_cal_value_t val_type = esp_adc_cal_characterize(ADC_UNIT_1, ADC_ATTEN_DB_6, ADC_WIDTH_BIT_11, DEFAULT_VREF, adc_chars);
//    print_char_val_type(val_type);

    /* event handler and event group for this task */
    xEventGroupADC = xEventGroupCreate();
    EventBits_t uxBits;

    /*
     * Task loop forever.
     */
    while (1) {

	uxBits = xEventGroupWaitBits(xEventGroupADC, TASK_ADC_REQUEST_PRESSURE, pdFALSE, pdFALSE, portMAX_DELAY );

	if (uxBits & TASK_ADC_REQUEST_PRESSURE) {

	    adc1_config_width(ADC_WIDTH_BIT_11);

	    for (i = 0; i < 3; i++) {
		adc_reading = 0;
		atten = ADC_ATTEN_DB_0;
		
		/*
		 * Autoranging the ADC conversion
		 */
		while (1) {
		    esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_BIT_11, DEFAULT_VREF, adc_chars);
                    adc1_config_channel_atten((adc1_channel_t)adc_state->Pressure[i].channel, atten);
		    int raw = adc1_get_raw((adc1_channel_t)adc_state->Pressure[i].channel);
//	printf("raw: %d atten: %d\n", raw, atten);
//		    if (raw < 3400)
//			break;

		    if (atten == ADC_ATTEN_DB_0 && raw > 1850)
			atten = ADC_ATTEN_DB_2_5;
		    else if (atten == ADC_ATTEN_DB_2_5 && raw > 1850)
			atten = ADC_ATTEN_DB_6;
		    else if (atten == ADC_ATTEN_DB_6 && raw > 1850)
			atten = ADC_ATTEN_DB_11;
		    else
			break;
		}

		/*
		 * Now that he have the best attenuation, multisample the real value.
		 */
        	for (int j = 0; j < NO_OF_SAMPLES; j++) {
			int tmp = adc1_get_raw((adc1_channel_t)adc_state->Pressure[i].channel);
			adc_reading += tmp;
//			printf("%4d ", tmp);
		    //adc_reading += adc1_get_raw((adc1_channel_t)adc_state->Pressure[i].channel);
		}
//		printf("\n");
		if (adc_reading < 0) {
		    adc_state->Pressure[i].error = ADC_ERR_READ;
		    adc_state->Pressure[i].voltage = 0;
		} else {
		    adc_reading /= NO_OF_SAMPLES;
		    if (xSemaphoreTake(xSemaphoreADC, 25) == pdTRUE) {
		    	adc_state->Pressure[i].voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_chars); // voltage in mV
			adc_state->Pressure[i].error = ADC_ERR_NONE;
			xSemaphoreGive(xSemaphoreADC);
		    }
		}
            	ESP_LOGI(TAG, "Pressure %d raw: %4d, atten: %d, %.3f volt, error: %d",
                    i, adc_reading, atten, adc_state->Pressure[i].voltage / 1000.0, adc_state->Pressure[i].error);
	    }

	    adc_reading = 0;
	    atten = ADC_ATTEN_DB_6; // Don't use DB_11, it has a bad linearity.
	    esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_BIT_11, DEFAULT_VREF, adc_chars);
            adc1_config_channel_atten((adc1_channel_t)BATT_CHANNEL, atten);
	    for (int j = 0; j < NO_OF_SAMPLES; j++) {
            	adc_reading += adc1_get_raw((adc1_channel_t)BATT_CHANNEL);
            }

	    if (adc_reading < 0) {
		adc_state->Batt_voltage = 0;
		adc_state->Batt_error = ADC_ERR_READ;
	    } else {
	        adc_reading /= NO_OF_SAMPLES;
	    	if (xSemaphoreTake(xSemaphoreADC, 25) == pdTRUE) {
                    adc_state->Batt_voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_chars) * 2; // Chip supply voltage in mV
                    adc_state->Batt_error = ADC_ERR_NONE;
                    xSemaphoreGive(xSemaphoreADC);
            	}
	    }

	    xEventGroupClearBits(xEventGroupADC, TASK_ADC_REQUEST_PRESSURE);
	    xEventGroupSetBits(xEventGroupADC, TASK_ADC_REQUEST_DONE);
#if 1
	    ESP_LOGI(TAG, "Battery    raw: %4d, atten: %d  %.3f volt, error: %d", adc_reading, atten, adc_state->Batt_voltage / 1000.0, adc_state->Batt_error);
#endif
	}
	vTaskDelay( (TickType_t)10);
    }
}

mercurial