main/task_ina219.c

Wed, 19 Apr 2023 15:38:42 +0200

author
Michiel Broek <mbroek@mbse.eu>
date
Wed, 19 Apr 2023 15:38:42 +0200
changeset 34
40231d010111
parent 30
7448b8dd4288
permissions
-rw-r--r--

Global settings for the INA219 boards.

/**
 * @file task_ina219.c
 * @brief The FreeRTOS task to query the INA219 sensors.
 */


#include "config.h"


static const char		*TAG = "task_ina219";

/*
 * Global settings for the INA219 boards.
 */
#define	BUS_RANGE		INA219_BUS_RANGE_32V
#define	GAIN_SHUNT		INA219_GAIN_0_125
#define	U_RES			INA219_RES_12BIT_4S
#define	I_RES			INA219_RES_12BIT_2S

SemaphoreHandle_t		xSemaphoreINA219 = NULL;	///< Semaphore INA219 task
EventGroupHandle_t		xEventGroupINA219;		///< Events INA219 task
INA219_State			*ina219_state;			///< Public state for other tasks

extern ina219_t			ina219_b_dev;
extern ina219_t			ina219_s_dev;

const int TASK_INA219_REQUEST_DONE = BIT0;			///< All requests are done.
const int TASK_INA219_REQUEST_POWER = BIT1;			///< Request power readings



void request_ina219(void)
{
    xEventGroupClearBits(xEventGroupINA219, TASK_INA219_REQUEST_DONE);
    xEventGroupSetBits(xEventGroupINA219, TASK_INA219_REQUEST_POWER);
}



bool ready_ina219(void)
{
    if (xEventGroupGetBits(xEventGroupINA219) & TASK_INA219_REQUEST_DONE)
	return true;
    return false;
}



/*
 * Task to read INA219 sensors on request.
 */
void task_ina219(void *pvParameter)
{
    float	bus_voltage, shunt_voltage;

    ESP_LOGI(TAG, "Starting task INA219 sda=%d scl=%d", CONFIG_I2C_MASTER_SDA, CONFIG_I2C_MASTER_SCL);
    ina219_state = malloc(sizeof(INA219_State));

    ina219_state->Battery.valid = false;
    ina219_state->Battery.fake = (ina219_b_dev.i2c_dev.addr == 0) ? true:false;
    ina219_state->Battery.address = ina219_b_dev.i2c_dev.addr;
    ina219_state->Battery.error = INA219_ERR_NONE;
    if (ina219_b_dev.i2c_dev.addr) {
	ESP_LOGI(TAG, "Configuring INA219 Battery");
	ESP_ERROR_CHECK(ina219_configure(&ina219_b_dev, BUS_RANGE, GAIN_SHUNT, U_RES, I_RES, INA219_MODE_CONT_SHUNT_BUS));
    	ESP_LOGI(TAG, "Calibrating INA219 Battery");
    	ESP_ERROR_CHECK(ina219_calibrate(&ina219_b_dev, (float)I_MAX_CURRENT, (float)I_SHUNT_RESISTOR_MILLI_OHM / 1000.0f));
    }

    ina219_state->Solar.valid = false;
    ina219_state->Solar.fake = (ina219_s_dev.i2c_dev.addr == 0) ? true:false;
    ina219_state->Solar.address = ina219_s_dev.i2c_dev.addr;
    ina219_state->Solar.error = INA219_ERR_NONE;
    if (ina219_s_dev.i2c_dev.addr) {
        ESP_LOGI(TAG, "Configuring INA219 Solar");
        ESP_ERROR_CHECK(ina219_configure(&ina219_s_dev, BUS_RANGE, GAIN_SHUNT, U_RES, I_RES, INA219_MODE_CONT_SHUNT_BUS));
        ESP_LOGI(TAG, "Calibrating INA219 Solar");
        ESP_ERROR_CHECK(ina219_calibrate(&ina219_s_dev, (float)I_MAX_CURRENT, (float)I_SHUNT_RESISTOR_MILLI_OHM / 1000.0f));
    }

    /* event handler and event group for this task */
    xEventGroupINA219 = xEventGroupCreate();
    EventBits_t uxBits;

    /*
     * Task loop forever.
     */
    ESP_LOGI(TAG, "Starting loop INA219 sensors 0x%02x %d, 0x%02x %d",
		    ina219_state->Battery.address, ina219_state->Battery.fake, ina219_state->Solar.address, ina219_state->Solar.fake);
    while (1) {

	uxBits = xEventGroupWaitBits(xEventGroupINA219, TASK_INA219_REQUEST_POWER, pdFALSE, pdFALSE, portMAX_DELAY );

	if (uxBits & TASK_INA219_REQUEST_POWER) {
	    /*
             * We run the ESP32-C3 in Power Save mode, Dynamic Frequency Scaling.
             * This means a wrong current measurement (too high) unless we let the CPU
             * rest for a while. The INA219 runs in continuous mode so we get the
             * results during the vTaskDelay().
	     * We also run the INA219 boards in standby/power-on mode, so first turn
	     * them on.
             */
	    if (! ina219_state->Battery.fake)
		ESP_ERROR_CHECK(ina219_configure(&ina219_b_dev, BUS_RANGE, GAIN_SHUNT, U_RES, I_RES, INA219_MODE_CONT_SHUNT_BUS));
	    if (! ina219_state->Solar.fake)
                ESP_ERROR_CHECK(ina219_configure(&ina219_s_dev, BUS_RANGE, GAIN_SHUNT, U_RES, I_RES, INA219_MODE_CONT_SHUNT_BUS));
	    vTaskDelay(20 / portTICK_PERIOD_MS);

	    /*
	     * Four scenario's:
	     * 1. Both sensors present, just use them.
	     * 2. Only battery sensor (test environment). Use it and fake
	     *    the solar chip as if it is charging.
	     * 3. Only solar sensor. Use scenario 4, but show measured values.
	     * 4. Fake everything.
	     */
	    if (! ina219_state->Battery.fake) {
		ESP_ERROR_CHECK(ina219_get_bus_voltage(&ina219_b_dev, &bus_voltage));
		vTaskDelay(10 / portTICK_PERIOD_MS);
		ESP_ERROR_CHECK(ina219_get_shunt_voltage(&ina219_b_dev, &shunt_voltage));
		/*
		 * We don't call ina219_get_current(&ina219_b_dev, &current) because it takes
		 * a new measurement which usual gives the same results as the shunt voltage.
		 * So just calculate the current.
		 */
		ESP_ERROR_CHECK(ina219_configure(&ina219_b_dev, BUS_RANGE, GAIN_SHUNT, U_RES, I_RES, INA219_MODE_POWER_DOWN));
		ESP_LOGI(TAG, "Battery VBUS: %.03f V, VSHUNT: %.02f mV, IBUS: %.01f mA", bus_voltage, shunt_voltage * 1000, shunt_voltage * 10000);
	    }
	    if (xSemaphoreTake(xSemaphoreINA219, 25) == pdTRUE) {
		if (ina219_state->Battery.fake) {
		    ina219_state->Battery.volts = 13.21;
		    if (ready_WiFi()) {
			ina219_state->Battery.shunt = 0.00785;
			ina219_state->Battery.current = 78.5;
		    } else {
			ina219_state->Battery.shunt = 0.00182;
			ina219_state->Battery.current = 18.2;
		    }
		} else {
		    ina219_state->Battery.volts = bus_voltage;
		    ina219_state->Battery.shunt = shunt_voltage;
		    ina219_state->Battery.current = shunt_voltage * 10000;
		}
		ina219_state->Battery.valid = true;
		xSemaphoreGive(xSemaphoreINA219);
	    }

	    if (! ina219_state->Solar.fake) {
                ESP_ERROR_CHECK(ina219_get_bus_voltage(&ina219_s_dev, &bus_voltage));
		vTaskDelay(10 / portTICK_PERIOD_MS);
                ESP_ERROR_CHECK(ina219_get_shunt_voltage(&ina219_s_dev, &shunt_voltage));
		ESP_ERROR_CHECK(ina219_configure(&ina219_s_dev, BUS_RANGE, GAIN_SHUNT, U_RES, I_RES, INA219_MODE_POWER_DOWN));
                ESP_LOGI(TAG, "  Solar VBUS: %.03f V, VSHUNT: %.02f mV, IBUS: %.01f mA", bus_voltage, shunt_voltage * 1000, shunt_voltage * 10000);
	    }
	    if (xSemaphoreTake(xSemaphoreINA219, 25) == pdTRUE) {
		if (! ina219_state->Solar.fake && ! ina219_state->Battery.fake) {
		    ina219_state->Solar.volts = bus_voltage;
                    ina219_state->Solar.shunt = shunt_voltage;
                    ina219_state->Solar.current = shunt_voltage * 10000;
		} else if (ina219_state->Solar.fake && ! ina219_state->Battery.fake) {
		    ina219_state->Solar.volts = ina219_state->Battery.volts + 0.78;
		    ina219_state->Solar.shunt = 0.02341;
		    ina219_state->Solar.current = 234.1;
		} else {
		    ina219_state->Solar.volts = 13.98;
		    ina219_state->Solar.shunt = 0.02341;
		    ina219_state->Solar.current = 234.1;
		}
		ina219_state->Solar.valid = true;

		/*
		 * Now update the outer state
		 */
		ina219_state->valid = (ina219_state->Battery.valid && ina219_state->Solar.valid);
		ina219_state->fake = (ina219_state->Battery.fake || ina219_state->Solar.fake);
		ina219_state->error = ina219_state->Battery.error;
		if (ina219_state->error == 0)
		    ina219_state->error = ina219_state->Solar.error;
		xSemaphoreGive(xSemaphoreINA219);
	    }

	    xEventGroupClearBits(xEventGroupINA219, TASK_INA219_REQUEST_POWER);
	    xEventGroupSetBits(xEventGroupINA219, TASK_INA219_REQUEST_DONE);
	}
    }
}

mercurial